## PK/PD: Gut vs Genital Tract

Mackenzie L Cottrell, PharmD, MS, BCPS, AAHIVP Research Assistant Professor, UNC Eshelman School of Pharmacy Assistant Director, Clinical Pharmacology and Analytical Chemistry Core, CFAR

#### 20March2017



## Adherence Correlates with Clinical Trial Results



#### Percentage of Participants' Samples with detectable drug levels (Analysis based on a subset of total trail participants, Pearson correlation = 0.86, p=0.003)

SS Abdool Karim, personal communication

Adapted from Landovitz R. PrEP for HIV Prevention: What We Know and What We Still Need to Know for Implementation. CROI 2015.

## Adherence Correlates with Clinical Trial Results



#### SS Abdool Karim, personal communication

Adapted from Landovitz R. PrEP for HIV Prevention: What We Know and What We Still Need to Know for Implementation. CROI 2015.

## NRTI Pharmacology Differs by Exposure Site



Patterson KB Sci Transl Med. 2011 Dec 7;3(112):112re4.

## PK Principles: Time to Steady State



## PK Principles: Time to Steady State



### **Time to Steady State in Tissues**



## Time to Steady State in CVF



Dumond. AIDS (2007) 21:1899-907.

## **PK Principles: Effective Concentrations**



## **TDF/FTC PrEP Mechanism of Action**

**Host Endogenous Nucleotide Pool** 



## **TDF/FTC PrEP Mechanism of Action**

**Host Endogenous Nucleotide Pool** 



## Endogenous Substrates Affect NRTI Potency

Lower TFVdp:dATP associated with infection in 4/6 macaques dosed with tenofovir PrEP

Molar TFVdp:dATP ratio of ≥1 associated with 100% reverse transcriptase inhibition



Adapted from: García-Lerma J G et al. J. Virol. 2011;85:6610-6617

## Intracellular Metabolite:Endogenous Nucleotide as an Efficacy Target

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}T^{-P-P}T^{-P-P}P$$

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}T^{-P-P}P$$

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}T^{-P-P}P$$

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}T^{-P-P}P$$

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}T^{-P-P}P$$

$$A^{-P-P-P}A^{-P-P-P}T^{-P-P}T^{-P-P}P$$

## Ratios Differ Between Mucosal Tissues

#### Phase I Study Design

- 48 healthy female volunteers
- Single dose of either:
  - Tenofovir-DF 150, 300, 600mg
  - Emtricitabine 100, 200, 400mg
- Sample collection:
  - 12 blood plasma samples over 48 hours
  - Tissue at 6, 12, 24, <u>OR</u>
     48 hours



## Intracellular Metabolite:Endogenous Nucleotide as an Efficacy Target



## Intracellular Metabolite:Endogenous Nucleotide as an Efficacy Target



5. Interaction between TFVdp and FTCtp not described

## <u>Modeling Population Pharmacokinetics</u> <u>8 Compartment PK Model Describes Tissue PK</u>



Yang K. American Conference on Pharmacometrics 5, Abstract. Las Vegas NV October 12-15, 2014.

## Modeling Population Pharmacokinetics Simulated Mucosal Tissue Molar Ratios



Yang K. Unpublished data. 2014.

## Finding Efficacy Target for Prevention Selecting the Right In Vitro Model

#### Altered Microenvironment in Cultured Tissue Explants



Adapted from Nicol MR et al J Acquir Immune Defic Syndr. 2015 Apr 1;68(4):369-76.

## Finding Efficacy Target for Prevention In vitro Exposure vs Response Model



CellEC50 (±SE)Hill (±SE)EC90TZM-bl0.059 (±0.004)1.42 (±0.11)0.27CD4+0.022 (±0.005)1.86 (±0.67)0.07



## <u>Modeling Additivity/Synergy</u> <u>In vitro TFVdp:dATP/FTCtp:dCTP Interaction Model</u>



## Making PK-PD Predictions <u>First 10 Daily Doses</u>



Model Parameters: TFVdp:dATP EC90=0.29; FTCtp:dCTP EC90=0.07; Ψ =0.632

## <u>Making PK-PD Predictions</u> <u>Scenarios of Imperfect Adherence</u>



Model Parameters: TFVdp:dATP EC90=0.29; FTCtp:dCTP EC90=0.07;  $\Psi$  =0.632

# Making PK-PD Predictions Pericoital Dosing





#### Time to Protection

- Steady State achieved by 5-7 days in rectal cells from Cell PrEP
   Study and within ~1-7 days in cervical cells but data less conclusive
- PK/PD Model predicts effective exposure achieved by third dose of TDF/FTC in both female genital and lower gastrointestinal tract tissues

#### Minimal Required Adherence

- 100% Adherence (Daily TDF/FTC): 100% at target in both female genital and lower gastrointestinal tract tissues
- 30% Adherence (~Twice weekly TDF/FTC): 65% vs 100% at target in female genital and lower gastrointestinal tract, respectively
- When pharmacokinetics and pharmacodynamics are characterized drug dosing strategies can be efficiently explored in silico, along with estimates of efficacy prior to Phase III studies.

# <u>Acknowledgements</u>



<u>UNC CFAR Clinical Pharmacology and</u> <u>Analytical Chemistry Core Members</u> Angela DM Kashuba, BScPhm, PharmD, DABCP Heather Prince, CCRP, MPA, PA-C Craig Sykes, MS



UNC CFAR Virology, Immunology and Microbiology Core Members Julie AE Nelson, PhD John Schmitz, PhD



UNC School of Medicine Kristine B Patterson, MD Nicholas J Shaheen, MD Ryan D Madanick, MD Evan S Dellon, MD NIH National Institutes of Health

<u>NIH Collaborators:</u> Hans Spiegel, MD Fulvia Veronese, Ph.D

Funding Sources: NIAID Grant U01AI09503 NIGMS Grant 5T32GM086330 CFAR Grant P30AI50410